Symbolic methods for developing new domain decomposition algorithms

نویسندگان

  • T. Cluzeau
  • V. Dolean
  • F. Nataf
  • A. Quadrat
چکیده

The purpose of this work is to show how algebraic and symbolic techniques such as Smith normal forms and Gröbner basis techniques can be used to develop new Schwarz-like algorithms and preconditioners for linear systems of partial differential equations. Key-words: Systems of partial differential equations, domain decomposition methods, symbolic computation, systems theory, algebraic analysis, decoupling methods, Gröbner basis techniques. Work supported by the PEPS Maths-ST2I SADDLES http://www-math.unice.fr/~dolean/saddles/ ∗ Université de Limoges ; CNRS ; XLIM UMR 7252, DMI, Limoges, [email protected] † Université de Nice Sophia-Antipolis, Laboratoire J.-A. Dieudonné, Nice, [email protected] ‡ Laboratoire J.-L. Lions, Université Paris VI, [email protected] § INRIA Saclay Île-de-France, DISCO Project, L2S, Supélec, Gif-sur-Yvette, [email protected] ha l-0 06 94 46 8, v er si on 1 4 M ay 2 01 2 Méthodes symboliques pour le développement de nouveaux algorithmes de décomposition de domaine Résumé : L’objet de ce travail est de monter comment les techniques algébriques et symboliques telles que les formes normales de Smith et les techniques de bases de Gröbner peuvent être utilisées pour développer de nouveaux algorithmes de type Schwarz et des préconditionneurs pour les systèmes linéaires d’équations aux dérivées partielles. Mots-clés : Systèmes d’équations aux dérivées partielles, méthodes de décomposition de domaine, calcul formel, théorie des systèmes, analyse algébrique, méthodes de découplage, techniques de bases de Gröbner. ha l-0 06 94 46 8, v er si on 1 4 M ay 2 01 2 Symbolic methods for developing new domain decomposition algorithms 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symbolic Techniques for Domain Decomposition Methods

Some algorithmic aspects of systems of PDEs based simulations can be better clarified by means of symbolic computation techniques. This is very important since numerical simulations heavily rely on solving systems of PDEs. For the large-scale problems we deal with in today’s standard applications, it is necessary to rely on iterative Krylov methods that are scalable (i.e., weakly dependent on t...

متن کامل

Symbolic preconditioning techniques for linear systems of partial differential equations

Some algorithmic aspects of systems of PDEs based simulations can be better clarified by means of symbolic computation techniques. This is very important since numerical simulations heavily rely on solving systems of PDEs. For the large-scale problems we deal with in today’s standard applications, it is necessary to rely on iterative Krylov methods that are scalable (i.e., weakly dependent on t...

متن کامل

Domain decomposition algorithms for mixed methods for second-order elliptic problems

In this talk domain decomposition algorithms for mixed nite element methods for linear second order elliptic problems in IR and IR are discussed A convergence theory for two level and multilevel Schwarz methods applied to the al gorithms under consideration is given It is shown that the condition number of these iterative methods is bounded uniformly from above in the same manner as in the theo...

متن کامل

OPTIMAL DECOMPOSITION OF FINITE ELEMENT MESHES VIA K-MEDIAN METHODOLOGY AND DIFFERENT METAHEURISTICS

In this paper the performance of four well-known metaheuristics consisting of Artificial Bee Colony (ABC), Biogeographic Based Optimization (BBO), Harmony Search (HS) and Teaching Learning Based Optimization (TLBO) are investigated on optimal domain decomposition for parallel computing. A clique graph is used for transforming the connectivity of a finite element model (FEM) into that of the cor...

متن کامل

A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining

Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012